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MAXIMUM ENTROPY BEAM DIAGNOSTIC TOMOGRAPHY*

C. 7. Mottershead, AT-6, MS HB29+
Los Alamos National Laboratory, Los Alamos, NM 87545

Summary

This paper reviews the formalism of iiaximum en-
tropy beam diagnostic tomography as applied to the
Fusion Mcterials Irradiation Test (FM1T) prototype
accelerator. The same formalism has also been used
with streak camera data to produce an ultrahigh speed
movie of the beam profile of the Experimental Test
Accelerator (ETA) at Livermore.

Introduction

Intense particle beams require noninterceptive
diagnostics. One of these is the 1ight emitted from
interaction of the beam with residual gas. If the
1ight is produced by a first-order process linear in
the beam density, its profile measured across the beam
may be interpreted as a tomographic projection of
that density distribution.2-¢ With a small number of
such projections, and appropriate transfer matrices
connecting them, Minerbo's®+% maximum entropy algo-
rithm may be used to construct an estimate of the beam
density distribution in both coordinate and phase
space. The objeciive of this paper is to provide a
concise review of this formalism and some of its ap-
plications to accelerator diagnostics.

Formulation of Problem

The problem is defined in a Cartesian coordinate
system {x, y, z) with the z axis in the beam direc
tion. The quantities being sought are the two-
dimensional functions f(x,y), representing the density
of the beam in tne plane z - 0, or the phase-space
density distribution f(x,x') where x' = dx/dz is the
slope ot the trajectorv and is proportional to the
transverse momentum.

The observed data 1s a set of N different projec -
tion integrals, defined by

P,(s) =“i fixp(s.t), vy (s,t)) dt
M
ne1,2, ... N

tach projection is specified by a different pair of
coordinate transformation functions

y = ypls.t) (2)

that give the mapping between the (x,y) plane and the
(s,t) plane with s the projection sample coordinate,
and t the transverse integration coordinate. Each
projection integral piovides a different "view" of the
same (unknown) function f(x,y). This concept s eas-
1y viiualized in the case of spactal reconstruction,
where the views are taken at different angles about
the beam axis (see Fig. 1). The nth pair of trans
formed coordinates are then specified by a simple

rotation matrix
sin en‘ X
' (3)
cus 8 y

( 5 ) cos en
t “An en

from which we obtalin

x = xp(s,t) and
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Fig. 1. The geom
etry of tomo-
graphic projec-

tion for spacial
reconstruction
(+ signs).

xp(s.,t) = s cos &, -t sin op and
(4)
yn(s,t) = s sin 6, + t cos o,

For the emittance (pha-e-space) reconstruction,
observations are taken from a series of stations at
different z-coordinates down the beamline. The pro-
jection sample coordinate at the nth station is just
s = x, the spacial coordinate across the beam. The
coordinate being Integrated over is the trajectory
slope t = x'.

We assume these (s,t) coordinates for the nth
station are related to the (x,x') coordinates in the
reconstruction plane at z ~ O, by an arbitrary linear
transport matrix Ap:

23 X a, b, T /x

= r "
] |
] ]

t b3 h dn X
The Jacobian of the transformation is J, = Adet|Anj
= apd, - bpcp. Because Jy is the area of the (s,t)
plane corresponding to a unit area in the {x,x')
plane, it specifies the emittance change between z - 0
and station n (2 = z,). From the inverse matrix, we
obtain in general

x = xp(s,t) » (dps - bpt)/Jp and
(6)
x' = vn(s,t) = (apt - cps)/dp

Note that the s a-1s maps into a line through the
origin with slope -c,/dp. The integration direction
for the nth view 1s paraliel to the image of the
t-axis, namely, a family of lines with sicpe -ap/by,.
The simplest example is a linear drift for whic

il

[A"] "1, : . (N

In this case, the s-axis maps onto the x -axis, while
the t-axis projection integration lines have a slope
-1/%p. Note again that we are treating each observed
projection as a view in a different coordinate system
of 1he same, fixed, phase-space distribution function
f(x,x'). But in the (x,x') plane, the projection and
sample axes for the other views are in general not or-
thogonal. This interpretstion is in contrest to the
mere usual one of the distribution function executing
a kind of generalized rotation and distortion, in
local (x,x') coordinates, as the particles move down
the beamline.



The Maximum Entropy Principle

The FMIT prototype accelerator at Lcs Alamos is
equipped with eight data-collecting stations capable
of measuring such projections (three using mirrors ang
TV cameras, the rest using fiber optics and Reticon
Vinear arrays. Given a set of projection data of the
type described by Eq. (1), we would like to invert it
to find f(x,y) or f(x,x'). If, in the rotation case,
we knew the projection as a continuous function of an-
gle, the Radon transform would give a unigue inverse.
In medical tomogqrapby, hundreds¢ of data views are
taken to approximate this result. Ffor accelerator
applications, however, we can have only a few views,
usually 3 or 4. 1In this cese the inversion is not
unique, and we need a mechanism for constructing an
estimate of f(x,y) that incorporates everything we
know, and nothing elise. The maximum entropy principle
offers a natural way for doing this.”™® [t argues
that, of al! the possibie distribution functions
f(x,y) that satisfy the cbserved constraints
[(Ea. (1)], the most reasonable one to choose is that
one that nature can produce in the greatest number of
ways, namely, the distribution having maximum entropy.

The entropy of a distribution f(x,y) may be de-
fined as

HOf) = —J1 dxdy f(x,y) In i(x,y) . (8)

This formula is the unique measure of the multiplicity
of the microstates consistent with a given distribu-
tion. It may be derived from the functional equations
expressing the logic of combining probabilities, or
from a direct counting of the number of independent
ways of distributing N particles over M cells of phase
space. This number is giv.n by

Woe ——— N (9)
n1! n2! e nm! '

wherc ny s the number ot particles in tne ith cell.
If we set ny = Nfy, so that fy = the fraction of par
ticles 4n the 1th cell, and use Stirling's approxima
tion, neglecting terms of order 1/N, we get

M
/N In W= - % f1 in f1 ) (10)
1=)

which is the discrete analog of tq. (8).

Equation (10) impiies that an N particle distri-
bution with entropy H corresponds to & multiplicity
W= exp NH., This means that, if the a priori proba
bility of a given distribution is proportional to the
nuinber of ways it cen be produced (that is, 1ts muiti-
plicity), nature strongly favors the maximum entropy
distribution, in the sense that a unit increase in
entropy corresponds to a fector of eN in muttiplicity,

Therefore, of all the distributions thal satisfy
our data constraints [EqQ. (1)], we wany the one having
maximum entropy, as defined by tq. (8). {ts construc
tion 1s a straightforward variational ca'~ulus prob
lem outlined in the next section. Its nature may be
surmised by noting that the unronstrained maximization
of entropy always leads to the uniform distribution
fy = 1/M. For the constrained problem then, the d!s
tributions of lesser entropy are presumably not as
smooth as the favored one, and contain verious oscii
latory terms that integrate to zero in the directions
of observation, leaving no evidence in the projection
data.

The Maximum Entropy Solution

The method of Lagrange multipliers is used to
maximize the entropy of Eq. (8) subject to the con-
straints of Eq. (1). Form the Lagrangian functional

wif.n) = H(f) +

n£1 [ds A (s) (] dt f(x . y) -p(s)) . ()

and demand that it be stationary with respect to var-
jations in both the unknown two-dimensional function
f(x,y) and the N unknown one-dimensional Lagrange mul-
tiplier functions ap(s). By construction, the condi-
tion &y = 0 under the variation ap(s) » Ap(s) + &ap(s),
for arbitrary &\p(s), only reproduces the constraint
Eqs. (1). What remains is to demard 8y = 0 under the
vartation f(x,y) » f(x,y) + &f(x,y), for arbitrary

8f(x,y). The variation in the entropy term is
immediately
8 = - [[ dxdy [V + In f (x,y)]&f(x,y) . (12)

To collect the coefficients of &f(x,y) from the summa
tion term is a bit more difficult. It requires the
observation that each of the double integrals on s and
t is over the entire plane, and can be transformed
back to the (x,y) coordinate system through the in
verses of the N different mappings specified by

€g. (2). For the nth mapping, we denote by Splx,y)
the function giving the value of s corresponding to
the point (x,y). 1n the case of simple rotations con-
necting the views, this is

sn(x,y) = X COS en +y sin en . (13a)

In the emittance case, y is replaced everywhere by x',
and tg. (5) gives

Sp(x,x'") = apx + bpx'. (13b)

After these toordinate transformations, the variation
of the sum term may be written

N

nz] 1] kn(sn(x.y)) §f(x,y) Jndydy . (14)

where Jn is the Jacobian of the transformation, a ron
stant fo~ the lincar transformations considered hcre.
For the rotational case, J, is always unity, whereas
for the phase-space reconstruction, Jn gives the
change in emittance {phase-space area scale) betwecn
the reconstruction plane and the nth data station.
Normally 1y = 1 in this case also. The terms involv
ing thr data pn(s) may be ignored because they do not
depenc on f.

We may now collect all the coefficients of
8f(»,y)1 from kes., (12) and (14) to find the condition
that ¢ be stationary under variations in f:

N
In f{x,y) = ¥ Iphp s xay)) . (15)

(X0

Because at this point, the Lagrange multipliers
Ap(s) are still unknown, it is convenient to
replace them by equally unknown "Lagrange factors"
hp(s) » exp(Jphp(s) 1/N) in terms of which

the me< mum entropy distribution takes nn a simple
product form



N
fouy) = 0 s ()] . (16)
n=1

Substitution of this form into the constraint tq. (1),
results in a set of N simultaneous nonlinear equations
for the N unknrwn one dimensional functions hy(s).
Minerbo® first noted the remarkable fart that, at
least for linear transformations, h,(s) always factors
out of its own constraint .ntegral

P,(s) = hy(s) [ dt kgn A s o)l on

He was therefore able in his MENT algorithm to use a
very fast Gauss-Seidel iteration technigue to svlve
for the hp(s). A modified solver has since been
written by the author to improve the stability of the
algorithm in the presence of noise.

In summary then, the maximum entropy distribution
is favored as the one most easily produced by nature,
and its form is always a simple product of Lagrange
factors hp(s), one for each view. The arguments of
the one-dimensional functions hn(s) are completely
specified by the geometry, and their shape is adjusted
to make the projections of the two-dimensional product
function agree with the given data. The simplicity
and generality of this result make it useful for many
purposes, including noninterceptive beam diagnostics.

In the FMI1 system at Los Alamos, this MENT algo-
rithm is running as part of an integrated software
system on an LSI 11/23 mounted in the same diagnostic
node where the data is recorded. The solution usually
converges in about 5 iterations, each of which takes
a few seconds in the typicai case of 3 or 4 views of
25 samples each, Figure 2 shows normalized projection
data (+ signs) and the reprojected solution at 3 loca-
tions on the FM1T beam line. Figures 3 and 4 show
contour and isometric plots of this emittance
distribution.
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Fig. 2. Three views of profile data and maximum
entropy fit.

Streak tomography is another application of this
algorithm in which the time dependence of the instan
taneous optical projection is recorded by a streak
camera.1° The streak image is raster scanned, and
this algorithm 15 used to construct a two-dimensional
frame of an cutput movie from the projection data
stored in each scan line. 1In an experiment at Liver
more, three views of the cross section of the electron
beam puise in the ETA were recorded with a stresk cam
era.'' The resulting time slice profiles were proc-
essed 1t EGAG, Los Alamos, into a 700 frame video
mov - representing 42 ns of real time, thus demon
strating the feasibility of the techrigue.
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fig. 3. Isometric display
of maximum entropy solu-
tion for phase-space dis-
tribution function.
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Fig. 4. Contour plot of maximum entropy solution for
phase -space distribution function.
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